注意
前往結尾以下載完整的範例程式碼。或透過 Binder 在您的瀏覽器中執行此範例
脊線運算子#
脊線濾鏡可用於偵測脊狀結構,例如神經突 [1]、管狀結構 [2]、血管 [3]、皺紋 [4] 或河流。
不同的脊線濾鏡可能適合偵測不同的結構,例如,取決於對比度或雜訊程度。
目前的脊線濾鏡類別依賴於影像強度的 Hessian 矩陣的特徵值,來偵測強度垂直於結構變化但沿結構不變化的脊線結構。
參考文獻#
![original, meijering σ = [1], meijering σ = [1, 2, 3, 4], sato σ = [1], sato σ = [1, 2, 3, 4], frangi σ = [1], frangi σ = [1, 2, 3, 4], hessian σ = [1], hessian σ = [1, 2, 3, 4]](../../_images/sphx_glr_plot_ridge_filter_001.png)
from skimage import data
from skimage import color
from skimage.filters import meijering, sato, frangi, hessian
import matplotlib.pyplot as plt
def original(image, **kwargs):
"""Return the original image, ignoring any kwargs."""
return image
image = color.rgb2gray(data.retina())[300:700, 700:900]
cmap = plt.cm.gray
plt.rcParams["axes.titlesize"] = "medium"
axes = plt.figure(figsize=(10, 4)).subplots(2, 9)
for i, black_ridges in enumerate([True, False]):
for j, (func, sigmas) in enumerate(
[
(original, None),
(meijering, [1]),
(meijering, range(1, 5)),
(sato, [1]),
(sato, range(1, 5)),
(frangi, [1]),
(frangi, range(1, 5)),
(hessian, [1]),
(hessian, range(1, 5)),
]
):
result = func(image, black_ridges=black_ridges, sigmas=sigmas)
axes[i, j].imshow(result, cmap=cmap)
if i == 0:
title = func.__name__
if sigmas:
title += f"\n\N{GREEK SMALL LETTER SIGMA} = {list(sigmas)}"
axes[i, j].set_title(title)
if j == 0:
axes[i, j].set_ylabel(f'{black_ridges = }')
axes[i, j].set_xticks([])
axes[i, j].set_yticks([])
plt.tight_layout()
plt.show()
腳本總執行時間: (0 分鐘 3.166 秒)