注意
移至末尾下載完整的範例程式碼。或通過 Binder 在您的瀏覽器中執行此範例
Canny 邊緣偵測器#
Canny 濾波器是一個多階段邊緣偵測器。它使用基於高斯導數的濾波器來計算梯度的強度。高斯降低了影像中存在的雜訊影響。然後,通過移除梯度幅值的非最大像素,將潛在的邊緣縮減為 1 像素曲線。最後,使用梯度幅值的遲滯閾值處理來保留或移除邊緣像素。
Canny 有三個可調整的參數:高斯的寬度(影像雜訊越多,寬度越大),以及遲滯閾值處理的低閾值和高閾值。

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage.util import random_noise
from skimage import feature
# Generate noisy image of a square
image = np.zeros((128, 128), dtype=float)
image[32:-32, 32:-32] = 1
image = ndi.rotate(image, 15, mode='constant')
image = ndi.gaussian_filter(image, 4)
image = random_noise(image, mode='speckle', mean=0.1)
# Compute the Canny filter for two values of sigma
edges1 = feature.canny(image)
edges2 = feature.canny(image, sigma=3)
# display results
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(8, 3))
ax[0].imshow(image, cmap='gray')
ax[0].set_title('noisy image', fontsize=20)
ax[1].imshow(edges1, cmap='gray')
ax[1].set_title(r'Canny filter, $\sigma=1$', fontsize=20)
ax[2].imshow(edges2, cmap='gray')
ax[2].set_title(r'Canny filter, $\sigma=3$', fontsize=20)
for a in ax:
a.axis('off')
fig.tight_layout()
plt.show()
腳本的總執行時間:(0 分鐘 0.342 秒)